Are all birds moving poleward?
Understanding distributional shifts in Ohio’s breeding birds

Katharine E. Batdorf, Paul G. Rodewald, Stephen N. Matthews, Matthew B. Shumar
Terrestrial Wildlife Ecology Lab, School of Environment and Natural Resources, The Ohio State University

Background
Recent widespread changes in climate and land cover have been shown to affect plants and animals in many ways including causing changes in their distributions. Several studies have reported poleward shifts in bird distributions likely in response to recent climate change. However, few multispecies studies have used fine-scaled regional data such as that generated by Breeding Bird Atlas projects, exceptions being Great Britain, the Czech Republic and New York State (the only North American study). Additional research is needed to test whether distributional changes are replicated in regions with different landscape composition and species assemblages. We tested for poleward shifts using breeding bird data atlas from Ohio, where >50% of land is in active agricultural use, asking the central research question:

Have the distributions of breeding bird species in Ohio responded to recent climatic changes?

More specifically, we predicted that:
1. Species’ northern and southern range boundaries and centers of occurrence will have shifted northward.
2. Southerly species will have gained blocks (filled in) relative to northerly species, which will have lost blocks (thinned out).
3. Species with range boundaries closer to Ohio (“extent proximity”) will show greater changes.
4. Southerly species will show greater changes than northerly species.

We used fine-scaled grid-based data collected during two Ohio Breeding Bird Atlas projects to quantify avian distribution changes in 67 bird species.

The Ohio Breeding Bird Atlas I & II

Within each block, we surveyed for potential breeding bird species in all available habitats over several visits (total ~25 hrs), resulting in the presence/absence of each species in the block. Data were collected by volunteer observers and field technicians, and includes external data sources such as U.S.G.S. Breeding Bird Survey and eBird.

Methods

Boundary

- Mean latitude of 10 northern or southern-most blocks

Center of Occurrence

- Mean location of all blocks where a species was found

Occupancy

- Was calculated using:
 - Leif blocks occupied in Atlas 2 – Leif blocks occupied in Atlas 1) to describe change relative to the if blocks occupied
 - Y-intercepts: Boundary and Center of Occurrence
 - Y-intercepts: Boundaries and Centers of southerly and northerly species

Extent Proximity: Measurement (km) of the distance from Ohio’s centroid to the nearest range boundary using NatureServe distribution maps (see map to right).

Species were categorized as either **Northerly** or **Southerly** based on the location of their distributions relative to Ohio. Species for which this was not apparent were eliminated from analyses.

Species Selection: Species were eliminated from analyses if their extent proximity was >560 km from Ohio’s centroid, or if they were extremely rare, ubiquitous, had detection biases between atlases, or have life histories that would introduce other biases.

Statistical Analyses: Boundary and Center of Occurrence AICc was used to examine and rank a candidate set of 8 ordinary least squares regression models, consisting of variables:

1. Change in Occupancy
2. Extent Proximity
3. Northerly vs. Southerly species

In both analyses 12*2 and 13*2 were both top models

We used the Rayleigh Test of Uniformity to test for directional trends in centers of occurrence. Because of the lack of a directional trend (p=0.56), we tested for a northward response.

Statistical Analyses: Occupancy

A linear model of variables 2 & 3 above was considered

Results

Boundary

- Y-intercepts: Boundaries and Centers of southerly species shifted North by 6.8 (± 4.5) and 0.7 km (± 2.8), respectively.
- Y-intercepts: Boundaries and Centers of northerly species shifted South by 11.8 (± 6.1) and 5.7 km (± 3.8), respectively.

Center of Occurrence

- Change in latitude (km) versus change in occupancy for boundaries (left), and centers of occurrence (right) for southerly and northerly species. Adjusted R² = 0.68 and 0.42, respectively. Y-intercepts indicate shift beyond that expected with changes in occupancy. 95% CI’s shown.

Occupancy

- Change did not differ between northerly and southerly species.

Conclusions

1. Poleward distribution shifts were less consistent in our study compared with previous studies, as we found evidence suggesting a northward shift in southerly species, but stronger evidence for a southward shift in northerly species.
2. We found no significant difference in occupancy change between northerly and southerly species. Thus it does not appear that species are “filling in” or “thinning out” in response to climate change.
3. We found that extent proximity provided additional insight in our models, and as trended as we predicted: with closer extent proximities, effect size increased across variables. Additionally, it allowed us to include more species than if we had used a closer extent cutoff for selecting species.

So why a less clear climate change signal in Ohio?

This could be because 1) temperature increase has been less extreme in Ohio during this time period [map A], 2) widespread anthropogenic land use patterning in Ohio has created a heterogeneous habitat landscape in which species often cannot fill new potential climatic regions due to lack of habitat, making a climate change signal more difficult to detect than in more contiguous landscapes, or 3) land cover has changed substantially in Ohio over this time period, resulting in distribution changes; e.g. reforestation of southeast Ohio may be driving southward trends in northerly species [map B].

Our ongoing research is exploring the spatial influences of both climate and land cover change on the shifts in avian species distributions we observed.

Katharine Batdorf, M.S. student: batdorf.14@osu.edu